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Abstract

Vibration modes of a beam have been identified previously as superposed standing waves, each of which consisting of

two components, denoted by ka and kb, respectively. In this paper, individual contributions of these two components to

dynamic normal and shear stresses in a beam are investigated, and their roles in the development of cracks in a beam are

briefly addressed. A cantilever beam subject to an impulse tip force of different time durations is chosen as an example to

illustrate their respective effects. The contributions of the kb-component are studied in particular, since it changes its wave

characteristics from evanescent to propagating when its frequency exceeds the critical frequency. For an impulse force of

long duration, it is shown that the kb-component is dominant in the normal stress while the ka-component is dominant in

the shear stress. They would play dominant roles for Mode I and Mode II of crack propagation, respectively. For an

impulse force of short duration, both normal and shear stresses are dominated by the ka-component. Therefore, the ka-

component would play a dominant role for both Mode I and Mode II of crack propagation. It should be noted, however,

ka- and kb-components above the critical frequency contribute almost equally to both normal and shear stresses, regardless

of the duration of the force.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic response of beam-type structural and machinery components subjected to time-variant loadings is
an important issue to be considered in engineering design if failure due to fatigue is to be avoided. It is well
known that there exists a yield stress for a structure, beyond which the structure will experience irreversible
plastic deformation. In the case of dynamic loading, however, failure might occur at a level of stress much less
than the yield stress. The stress-cycle diagram is usually used to determine an endurance limit for a safe
strength. For such a purpose, an analysis of dynamic stresses is necessary.

In this paper, an analysis of the contributions of different standing-wave components to dynamic stresses in
a beam is presented. While steady-state response of a beam subjected to external excitation has been
investigated extensively (e.g., Ref. [1]), the study of dynamic stresses in a beam is scarce. Roy and Ganesan [2]
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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considered a cantilever beam subjected to an impulse loading at the tip, showing that the contribution of
higher modes in the dynamic stress becomes important for an impulse loading of short duration.

In the study of Roy and Ganesan [2], the Euler–Bernoulli beam theory was used to model the beam where
the effects of shear deformation and rotary inertia were neglected. While this model gives good prediction in
the low-frequency range, it may not be sufficient for a beam subjected to impulse loading since the response
covers the whole frequency spectrum. The physics of beam vibration at high frequencies is not correctly
described by using this model [3]. When a beam is vibrating, its motion is represented by both transverse
displacement and bending rotation. They are not directly related as suggested by the Euler–Bernoulli theory,
but coupled through shear deformation as described by the Timoshenko beam theory. Chan et al. [4] showed
that, in general, the vibration mode of a beam is a superposed standing wave consisting of two standing-wave
components, one being translation dominated and the other being rotation dominated. These two components
correspond to two types of waves when the beam becomes infinite, termed the ka- and kb-waves, respectively.
It should be noted that while the ka-wave is propagating in the whole spectrum, the kb-wave is evanescent at
low frequencies and becomes propagating at frequencies higher than a critical frequency. For certain types of
boundary conditions, however, a vibration mode could be made up of only one standing-wave component,
either the ka- or the kb-component [5].

Mead [6] analyzed power flow in an infinite beam using Timoshenko beam theory, where the ka- and
kb-waves were termed the low-speed and the high-speed waves, respectively. For the ka-waves, the power flows
due to bending and shear are equal at low frequencies while the power flow due to shear becomes larger than
that due to bending at high frequencies. Only the kb-waves at high frequencies (at which they are propagating)
were considered, and the power flow due to bending is larger than that due to shear. This suggested that the
ka- and kb-waves play different roles in transmitting energy.

Another situation in which individual roles of the ka- and kb-waves are of interest is beam structures
with cracks. When a crack is present in a beam, it would develop under the action of local stresses when
the beam is vibrating due to impulse or cyclic loading. The growth of cracks could lead to ultimate failure
of the structure. Bending stress and shear stress play different roles in the growth of cracks; the former
usually induces Mode I of crack propagation, i.e., the crack develops perpendicular to the direction of the
crack, while the latter leads to Mode II of crack propagation, i.e., the crack develops parallel to the direction
of the crack [7]. Since bending and shear are dominant in kb- and ka-waves at higher frequencies, respectively,
a study of individual contributions of these two-wave components to bending and shear stresses will be
instructive.

In the present study, the contributions of these two standing-wave components (ka and kb) to dynamic
stresses in a beam are investigated. A uniform cantilever beam subjected to an impulse loading at the tip is
taken as an example. Since Bobrovnitskii [8] showed that evanescent waves could transmit energy in a finite-
length beam, the contribution of kb-components at frequencies below the critical frequency is also considered,
and particular attention is given to the variation of the contribution of the kb-component when it changes
from evanescent to propagating. The effect of force duration is also studied.

2. Theoretical analysis

2.1. Equation of motion

According to Timoshenko beam theory, the equation of motion of a uniform beam subjected to external
loadings is expressed as

rA
q2wðz; tÞ

qt2
� KGA

q2wðz; tÞ

qz2
�

qfðz; tÞ
qz

� �
¼ Feðz; tÞ,

EI
q2fðz; tÞ

qz2
þ KGA

qwðz; tÞ

qz
� fðz; tÞ

� �
� rI

q2fðz; tÞ
qt2

¼Meðz; tÞ, ð1Þ

where r is the density, A and I are the cross-sectional area and the second moment of area, respectively; E is
Young’s modulus, G is the shear modulus, and K is the shear coefficient. Fe and Me are the external force and
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moment, respectively. The critical frequency is given by

oc ¼

ffiffiffiffiffiffiffiffiffiffiffi
KGA

rI

s
. (2)

Along with the equation of motion, the boundary conditions of the beam must be specified and they are
important to the nature of vibration modes. Vibration modes of a beam with elastic end supports are
superposed standing waves in general [4]. Under certain boundary conditions, e.g., simply-supported,
vibration modes of a beam are not superposed standing waves but consist of one type of wave only, either
ka- or kb-wave [5]. In the present study, the general situation of superposed standing waves is considered.

2.2. Normal modes and orthogonal relations

The normal modes are obtained by solving the governing equation, Eq. (1), when external force and
moment are absent, along with corresponding boundary conditions. The general expression of superposed
normal modes associated with natural frequency om can be written as

SmðzÞ ¼
W mðzÞ

FmðzÞ

( )
¼

½Am sinðkamzþ famÞ� þ ½Bm sinhðkbmzþ fbmÞ�

qam½Am cosðkamzþ famÞ� þ qbm½Bm coshðkbmzþ fbmÞ�

( )
; for omooc, (3a)

SmðzÞ ¼
W mðzÞ

FmðzÞ

( )
¼

½Am sinðkamzþ famÞ� þ ½Bm sinðkbmzþ fbmÞ�

qam½Am cosðkamzþ famÞ� þ qbm½Bm cosðkbmzþ fbmÞ�

( )
; for om4oc, (3b)

where m ¼ 1, 2, 3,y, kam and kbm are the wave numbers of the ka- and kb-wave components, respectively,
qam ¼ kam � o2

m=kamo2
cr2g, qbm ¼ kbm � o2

m=kbmo2
cr2g, and rg ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration. In Eqs. (3), Am,

Bm, fam, and fbm, m ¼ 1, 2, 3,y, are constant coefficients to be determined.
The orthogonal relations of superposed normal modes have been given byMeirovitch [9], which can be written asZ L

0

ST
mðzÞM̂SnðzÞdz ¼ dmn, (4)

Z L

0

ST
mðzÞL̂ SnðzÞdz ¼ o2

mdmn, (5)

where Sm(z) and Sn(z) are the mth and the nth normal modes, respectively. The operators are given by

M̂ ¼
0 rI

rA 0

 !
, (6)

L̂ ¼

�KGA
d

dz
KGA� EI

d2

dz2

�KGA
d2

dz2
KGA

d

dz

0
BBB@

1
CCCA. (7)

Using the orthogonal condition and boundary conditions, the constant coefficients Am, Bm, fam, and fbm,
m ¼ 1, 2, 3,y, can be determined numerically to obtain the normal superposed modes.

2.3. Forced response and dynamic stresses

2.3.1. Forced response

The steady-state response of a beam subjected to external excitations can be obtained by using the modal
expansion theorem [10]. Usually, the steady-state response is written as

sðz; tÞ ¼
XM
m¼1

SmðzÞZmðtÞ ¼
XM
m¼1

W mðzÞ

FmðzÞ

( )
ZmðtÞ, (8)
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where Sm(z) is the mth normal mode, Zm(t) is the mth generalized coordinate determined by external
excitations, and M is the number of normal modes used in finding the response. In the present study, a
rectangular impulse loading is considered and is given by

Fðz; tÞ ¼
FeðzÞ

MeðzÞ

( )
½uðtÞ � uðt� T0Þ�, (9)

where u(t) is the step function defined as

uðtÞ ¼
1; tX0;

0; to0;

(

and T0 is the duration of the loading.
The generalized coordinate Zm(t) is obtained by substituting the general solution Eq. (8) into the governing

equation Eq. (1), and solving the equation thus obtained. For the rectangular impulse loading, the generalized
coordinate is expressed as

ZmðtÞ ¼
F em

o2
m

fð1� cos omtÞuðtÞ � ½1� cos omðt� T0Þ�uðt� T0Þg, (10)

where

Fem ¼

Z L

0

½FeðzÞW mðzÞ þMeðzÞFmðzÞ�dz. (11)
2.3.2. Dynamic stresses

Dynamic normal and shear stresses can be obtained from the transverse displacement and the bending
rotation. In the vector form, they are expressed as

rðz; tÞ ¼
szzðz; tÞ

tyzðz; tÞ

( )
¼

Ey
qfðz; tÞ

qz

KG
qwðz; tÞ

qz
� fðz; tÞ

� �
8>><
>>:

9>>=
>>;, (12)

where szz(z, t) and tyz(z, t) are normal and shear stresses, respectively. The focus of the present study is on
individual contributions of the ka- and kb-components presented in the form of superposed modes. They are
given by

rðz; tÞ ¼ raðz; tÞ þ rbðz; tÞ ¼
Ey

qfaðz; tÞ

qz
KGgaðz; tÞ

8<
:

9=
;þ Ey

qfbðz; tÞ

qz
KGgbðz; tÞ

8<
:

9=
;, (13)

where

gðz; tÞ ¼
qwðz; tÞ

qz
� fðz; tÞ

is the shear angle, and the subscripts a and b represent the ka- and the kb-components, respectively.
3. Numerical example and discussion

An example is given to demonstrate the contributions of the two components to dynamic stresses in a
beam. The example is a cantilever beam subjected to a point force at its tip as shown in Fig. 1. While
the duration of the force is represented by a rectangular step function in time given by Eq. (9), its spatial part is
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Fig. 1. A cantilever beam subjected to an impulse force at the tip.

Table 1

List of the first 20 natural frequencies of the cantilever beam

Mode number Natural frequency (Hz)

1 83

2 496

3 1306

4 2376

5 3625

6 4993

7 6437

8 7931

9 9455

10 10 995

11 12 539

12 14 073

13 15 568

14 16 722

15 17 091

16 17 543

17 18 436

18 18 853

19 19 900

20 20 413

The critical frequency of the beam is 16 620Hz.
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expressed as

FeðzÞ ¼
FeðzÞ

MeðzÞ

( )
¼

F 0dðz� LÞ

0

� �
, (14)

where F0 is the amplitude of the force, taken to be 1N in the present example.
The beam used in this example is of rectangular cross-section, with length L ¼ 1m, the dimensions of the

cross-section are Hy ¼ 0.1m and Hx ¼ 0.05m as shown in Fig. 1. The material of the beam is carbon steel
with Young’s modulus E ¼ 208� 109 Pa, shear modulus G ¼ 82� 109 Pa, and the density is r ¼ 7850 kg/m3.
The shear coefficient obtained by using Stephen’s formula [11] is given by K ¼ 5(1+n)/(6+5n) ¼ 0.864. The
critical frequency is found to be fc ¼ oc/2p ¼ 16 561Hz.

Normal mode analysis of the cantilever beam is carried out first. In Table 1 are listed the natural frequencies
of the first 20 modes. There are 13 modes below the critical frequency. In the present computation, the first 20
normal modes are used to find the response, i.e., N ¼ 20. For the rectangular impulse loading, the steady-state
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Fig. 2. Time evolutions of dynamic stresses of the cantilever beam subjected to an impulse tip force of long duration, at different locations

along the span: (a) z/L ¼ 0 (root); (b) z/L ¼ 0.25; (c) z/L ¼ 0.5; (d) z/L ¼ 0.75; and (e) z/L ¼ 1 (tip).
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response is written as

sðz; tÞ ¼
XN

n¼1

F0W nðLÞ

o2
n

W nðzÞ

FnðzÞ

( )
fð1� cos ontÞuðtÞ � ½1� cos onðt� T0Þ�uðt� T0Þg. (15)

Dynamic stresses can then be calculated using Eqs. (12) and (13). While the shear stress is an ‘‘averaged’’
one, the normal stress varies linearly over the cross-section. In the present example, the normal stress at the
edge of the cross-section, i.e., its maximum value is calculated. In the following, t and s are used to represent
the ‘‘averaged’’ shear stress and the maximum positive (tensile) normal stress, respectively. Two force
durations, T0 ¼ 0.1 s and 10 ms, are considered in the present example. The former one is a long duration,
much longer than the period of the lowest (the 1st) mode while the latter one is a short duration, shorter than
the period of the highest (the 20th) mode.
3.1. Dynamic normal and shear stresses for the long-duration force

The calculated normal and shear stresses at five locations along the span, i.e., z/L ¼ 0 (root), 0.25, 0.5, 0.75,
and 1 (tip) are plotted in Fig. 2. Apart from total dynamic stresses, individual contributions of the two
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Fig. 3. Spanwise statistics of dynamic stresses of the cantilever beam subjected to an impulse tip force of long duration: the period when

the force is present, 0ptoT0: (a) mean normal stress; (b) rms value of normal stress; (c) mean shear stress; and (d) rms value of shear

stress.
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components are also plotted to demonstrate their roles. In the figures, only a portion of each set of data is
plotted so that a qualitative but clear picture can be illustrated. For quantitative assessment, the
corresponding mean and root-mean-square (rms) values of the stresses are calculated and plotted in Figs. 3
and 4 for the periods when the force is present (0ptoT0) and absent (tXT0), respectively. The mean values of
the stresses give the static stresses, whereas the rms values of the stresses represent the magnitudes of dynamic
stresses. The phase difference between the two components are also calculated and plotted in Fig. 5.

For either normal or shear stress, the contributions of the two components appear to be equal and in-phase
at the root while equal and out-of-phase at the tip of the cantilever beam, as seen from Fig. 2. While the out-
of-phase relation at the tip is expected since they have to be superposed to give rise to zero normal and shear
stresses, the in-phase relation at the root cannot be understood readily. To facilitate easy interpretation of the
results, a theoretical analysis is given in Section 3.3. Along the beam span from root to tip, the kb-component
of the normal stress becomes larger while the ka-component of the shear stress becomes larger. Further
quantitative comparison of their individual contributions is illustrated by their mean and rms values, as shown
in Figs. 3 and 4.

In Fig. 3 are plotted the mean and rms values of the stresses when the force is applied (0ptoT0). During
this period, the beam experiences both static and dynamic stresses. For the static normal and shear stresses
shown in Figs. 3a and b, respectively, the two components show different trends in their spanwise variation.
For the normal stress, the ka-component decreases linearly from positive to negative as seen in Fig. 3a; thus
implying that it undergoes a transition from tensile to compressive. However, the kb-component is always
positive (tensile) and remains constant essentially, except near the tip where it is increased to balance the
ka-component at the tip. Therefore, the linear variation of total normal stress is due to the ka-component.
However, the total normal stress is kept positive (tensile) since the magnitude of the kb-component is larger
than that of the ka-component. In this sense, the kb-component dominates in the static normal stress. If a crack
is present in the beam and develops in Mode I, then the kb-component would play a dominant role.
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For the static shear stress, the kb-component decreases linearly from positive to negative as seen in Fig. 3b,
except near the tip where it suddenly drops to balance the ka-component at the tip. The ka-component
increases almost linearly and remains positive, and its magnitude is larger than that of the kb-component. As a
result, the total shear stress is constant and positive along the beam span, except near the tip. Therefore, the
ka-component would play a dominant role if a crack in the beam develops in Mode II.

Different from static stresses, the rms values of the total dynamic normal and shear stresses show quadratic
variation along the span, as shown in Figs. 3c and d, respectively. For the normal stress, both the ka- and the
kb-components first decrease and then increase along the beam span from root to tip, as seen in Fig. 3c. Their
minimum values occur at the mid-span. The rms value of the kb-component is larger than that of the
ka-component, implying that it dominates the dynamic normal stress. However, the spanwise variation of the
normal stress does not follow that of the kb-component, but shows a quadratic decrease. This can be attributed
to the phase difference between the two components as shown in Fig. 5a. The phase difference is close to zero
(in-phase) near the root and close to p (out-of-phase) near the tip. In between, the phase difference shows a
linear variation, and is equal to p/2 at mid-span. The rms value of the total normal stress is approximately
equal to the kb-component, thus it is the dominant one. If a crack at mid-span develops in Mode I, the
kb-component will play a dominant role in the growth of the crack.

For the shear stress, the ka-component first increases then decreases, with a maximum value at mid-span
while the kb-component first decreases then increases, with a minimum value at mid-span, as seen in Fig. 4d.
As a result, the total shear stress shows a quadratic decrease but its feature of variation is different from that
of the normal stress. This increases the possibility for a crack at the mid-span to develop in Mode II. The
spanwise variation of phase difference is similar to that for the normal stress, as seen in Fig. 5b. For the
dynamic shear stress, the ka-component is dominant. Therefore, it should play a significant role if a crack
develops in Mode II.

After the impulse force is removed (t4T0), the static stresses become approximately zero as shown in
Figs. 4a and b. The behavior of the spanwise variation of the dynamic stresses remains the same as shown in
Figs. 4c and d, so does that of the phase relationship as shown in Fig. 5b. However, the rms values of the
dynamic stresses are increased. This enhances the possibility of crack growth in both modes of crack
propagation.

One noteworthy feature of the kb-component is that its wave character transits from evanescent to
propagating when its frequency exceeds a critical value, oc. The influence of this transition on the contribution
of the kb-component to the stresses is studied by calculating the ratios of the rms values of the kb- and the
ka-components, in the frequency range below and above oc, respectively. The ratios below and above oc

indicate the contributions of the evanescent and the propagating kb-component, respectively. The results
calculated at mid-span of the beam are given in Table 2. It can be seen that the contribution of the evanescent
kb-components is significant in the normal stress but very small in the shear stress. This suggests that
evanescent kb-components play an important role in the normal stress. Furthermore, since the ratios are
calculated using the data at the mid-span of the beam, the result also suggests that the influence of evanescent
waves might not be limited to the near field as usually assumed.
Table 2

Comparison of the relative contributions of evanescent and propagating kb-components at mid-span of the cantilever beam subjected to an

impulse tip force of long duration

Evanescent kb-components (oooc) Propagating kb-components (o4oc)

(a) 0ptoT0

srms,b/srms,a 2.98 0.98

trms,b/trms,a 0.06 1.15

(b) t4T0

srms,b/srms,a 2.21 0.94

trms,b/trms,a 0.09 1.24
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3.2. Dynamic normal and shear stresses for the short-duration force

The influence of short duration of force is also considered in the present study. Since the time duration is
very short in this case (T0 ¼ 10 ms), the focus is on the dynamic stresses during the period t4T0. The calculated
dynamic stresses at five locations along the span, i.e., z/L ¼ 0 (root), 0.25, 0.5, 0.75, and 1 (tip), are plotted in
Fig. 6. Corresponding mean and rms values along the span are calculated and the results are plotted in Fig. 7.
The mean values are approximately zeroes as shown in Figs. 7a and b. This is expected since the static stresses
diminish after the force is removed. The phase difference between the ka- and the kb-components are plotted
in Fig. 8.

As seen from Fig. 6e, the behavior at the tip is similar to the case of long-duration force. The two
components are out-of-phase, and their contributions to the total dynamic stresses are equal. This is confirmed
by the statistics shown in Fig. 7 and the phase relationship shown in Fig. 8. At the root, the two components
appear to be in-phase, but as seen from Fig. 8, they have a slight phase difference in reality. For the normal
stress, the kb-component is slightly larger; while for the shear stress, the ka-component is larger, as shown in
Fig. 7. From the root to the tip, the contribution of the ka-component appears to be larger for both the normal
and the shear stresses.

In Figs. 7c and d are plotted the rms values of dynamic normal and shear stresses along the beam span. It
can be seen that the rms values of the total stresses decrease from their maximum values at the root, become
uniform along the span, and then decrease further to zero at the tip. This is rather different from the case of a
long-duration force, in which a quadratic decrease is observed. Moreover, the magnitudes of the dynamic
normal and shear stresses are much lower than those in the case of a long-duration force. This suggests that
the possibility for a crack to develop in either mode of propagation is significantly reduced.

Individual contributions of the two components also show some different features. They appear to be
uniform along the span in the middle section of the beam covering z/L ¼ 0.2–0.8. In this section, the
ka-components are dominant in both normal and shear stresses. This implies that, once a crack grows under
the action of a short-duration force, the ka-component plays a dominant role in spite of the modes of crack
propagation. The variation of the phase difference between the two components can be seen from Fig. 8. For
either normal or shear stress, the phase difference in the mid-span of the beam appears to be uniform and its
value is p/2.

The contribution of the kb-component when it transits from evanescent to propagating is also investigated.
In Table 3 are given the ratios of the rms value of the kb-component to that of the ka-component at the mid-
span of the beam, in the frequency range below and above the critical frequency, respectively. It can be seen
that the contribution of evanescent kb-components to the normal stress becomes less significant for the case of
short-duration excitation.
3.3. Further analysis of the phase relationship between the ka and kb components

From the above analysis, it is seen that the phase relationship between the two components affects their
individual contributions. At the root (clamped end) and the tip (free end), the two components have equal
contributions, but in-phase and out-of-phase, respectively. While the out-of-phase relationship at the tip is
expected, an analysis of the phase relationship at the root and along the beam span would be instructive. Only
the normal and the shear stresses in the period tXT0 are analyzed in the following, since the behavior of phase
difference is similar in the period 0ptoT0.

Consider the normal stress first. Using Eqs. (13) and (15), the expression of the maximum tensile normal
stress can be written as

sðz; tÞ ¼ saðz; tÞ þ sbðz; tÞ; (16a)

where

saðz; tÞ ¼
EHy

2

X20
n¼1

F0W nðLÞ

o2
n

F0anðzÞ cosðontþ ytnÞ, (16b)
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sbðz; tÞ ¼
EHy

2

X20
n¼1

F0W nðLÞ

o2
n

F0bnðzÞ cosðontþ ytnÞ, (16c)

ytn ¼ tan�1
sin onT0

1� cos onT0

� �
. (16d)

It can be seen that the phase relationship between the ka- and kb-components of the normal stress is
determined by the relationships between F0anðzÞ and F0bnðzÞ, which are expressed as

F0anðzÞ ¼ �qankanAn sinðkanzþ fanÞ; n ¼ 1; 2; . . . ; 20, (17a)

F0bnðzÞ ¼
qbnkbnBn sinhðkbnzþ fbnÞ; n ¼ 1; 2; . . . ; 13;

�qbnkbnBn sinðkbnzþ fbnÞ; n ¼ 14; 15; . . . ; 20:

(
(17b)

Each mode has to satisfy the boundary conditions individually. At the root (clamped end), the boundary
conditions for each mode can be written as

An sin fan þ Bn sinh fbn ¼ 0,

qanAn cos fan þ qbnBn cosh fbn ¼ 0; n ¼ 1; 2; . . . ; 13, ð18aÞ
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An sin fan þ Bn sin fbn ¼ 0,

qanAn cos fan þ qbnBn cos fbn ¼ 0; n ¼ 14; 15; . . . ; 20. ð18bÞ

From Eqs. (18a) and (18b), the following relations can be obtained,

An sin fan ¼ �Bn sinh fbn; n ¼ 1; 2; . . . ; 13, (19a)
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Table 3

Comparison of the relative contributions of evanescent and propagating kb-components at mid-span of the cantilever beam subjected to an

impulse tip force of short duration

Evanescent kb-components (oooc) Propagating kb-components (o4oc)

srms,b/srms,a 0.31 0.98

trms,b/trms,a 0.03 1.15

X.Q. Wang et al. / Journal of Sound and Vibration 310 (2008) 812–828826
An sin fan ¼ �Bn sin fbn; n ¼ 14; 15; . . . ; 20. (19b)

Furthermore, at the root,

F0anð0Þ

F0bnð0Þ
¼

�
qankanAn sin fan

qbnkbnBn sinh fbn

¼
qankan

qbnkbn

; n ¼ 1; 2; . . . ; 13;

qankanAn sin fan

qbnkbnBn sin fbn

¼ �
qankan

qbnkbn

; n ¼ 14; 15; . . . ; 20;

8>>><
>>>:

(20)

From the dispersion relations of the ka- and kb-waves given by Chan et al. [4], it can be deduced that
qankan40 for n ¼ 1, 2,y, 20, while qbnkbn40 for n ¼ 1, 2,y, 13 and qbnkbno0 for n ¼ 14, 15,y, 20. From
Eq. (20), it can be deduced that F0anð0Þ and F0bnð0Þ are of the same sign for each mode. Therefore, for the
normal stress at the root, the ka- and kb-components of each mode are thus in-phase, and their summations are
expected to be in-phase.

Secondly, consider the shear stress. Using Eqs. (13) and (15), they are expressed as

tðz; tÞ ¼ taðz; tÞ þ tbðz; tÞ; (21a)

where

taðz; tÞ ¼ KG
X20
n¼1

F0W nðLÞ

o2
n

HanðzÞ cos ðontþ ytnÞ, (21b)

tbðz; tÞ ¼ KG
X20
n¼1

F0W nðLÞ

o2
n

HbnðzÞ cosðontþ ytnÞ, (21c)

HnðzÞ ¼
dWnðzÞ

dz
� FnðzÞ and ytn ¼ tan�1

sin onT0

1� cos onT0

� �
. (21d)

It can be seen that the phase relationship between the ka- and kb-components of the shear stress is
determined by the relationships between Han(z) and Hbn(z), which are expressed as

HanðzÞ ¼ ðkan � qanÞAn cosðkanzþ fanÞ, (22a)

HbnðzÞ ¼
ðkbn � qbnÞBn coshðkbnzþ fbnÞ; n ¼ 1; 2; . . . ; 13;

ðkbn � qbnÞBn cosðkbnzþ fbnÞ; n ¼ 14; 15; . . . ; 20:

(
(22b)

At the root, their ratio is expressed as

Hanð0Þ

Hbnð0Þ
¼

ðkan � qanÞAn cos fan

ðkbn � qbnÞBn cosh fbn

; n ¼ 1; 2; . . . ; 13;

ðkan � qanÞAn cos fan

ðkbn � qbnÞBn cos fbn

; n ¼ 14; 15; . . . ; 20:

8>>><
>>>:

(23)

From Eqs. (18a) and (18b), another two relations can be obtained, they are

qanAn cos fan ¼ �qbnBn cosh fbn; n ¼ 1; 2; . . . ; 13, (24a)

qanAn cos fan ¼ �qbnBn cos fbn; n ¼ 14; 15; . . . ; 20. (24b)
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From the dispersion relations of the ka- and kb-waves given by Chan et al. [4], it can be deduced
that qan=ðkan � qanÞ40; while qbn=ðkbn � qbnÞo0. From Eqs. (23), (24a) and (24b), it can be deduced
that Han(z) and Hbn(z) are of the same sign for each mode. Therefore, for the shear stress at the root,
the ka- and kb-components of each mode are in-phase, and their summations are expected to be in-phase
too.

The in-phase relationship at the root and the out-of-phase relationship at the tip can be termed as definite
in the sense that the two components for each mode have the same phase relation, thus the overall
relationships are not affected by modal summation. At a position along the beam span, however, the situation
is different.

For the normal stress, the phase relation between the two components is determined by the phase
difference between F0anðzÞ and F0bnðzÞ. Referring to Eqs. (17a) and (17b), it can be seen that F0anðzÞ and F0bnðzÞ

could be of the same or of the opposite sign, thus the ka- and kb-components are either in-phase or
out-of-phase. This is illustrated by Fig. 9, where the ka- and kb-components of dynamic stresses for Modes 1
and 17 are shown. Natural frequencies of these two modes are below and above the critical frequency,
respectively. It can be seen that the two components are in-phase at the root and out-of-phase at the tip for
both modes. However, the phase relation between the two components varies along the span and is different
for different mode. Therefore, the phase relationship is not as definite as at the ends of the beam. While
the phase difference of 0 or p implies that the two components are well correlated (�1 or 1), the phase
difference of p/2 means that they are uncorrelated. The phase relation between the two components (each
summed over the first 20 modes) becomes about p/2, exhibiting a modal-summation-induced local
degradation of correlation between the two components over the middle span length of the cantilever. The
phenomenon is more marked for the case of short-duration impact because it should generate more high-
frequency modes.
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4. Conclusions

Individual contributions of two standing-wave components to the normal and shear dynamic stresses in a
beam are studied, and their roles in crack development in a beam are briefly addressed. In particular, the
contribution of the kb-component, whose wave character transits from evanescent to propagating at a critical
frequency, is investigated.

The beam considered is a cantilever subjected to an impulse loading at its tip, with two different time
durations, one much shorter than the period of the 20th mode, and the other much longer than the period of
the 1st mode, representing short and long duration of the force, respectively. For a long-duration impulse
loading, the normal and the shear stresses are dominated by the kb- and the ka-components, respectively. For a
short-duration impulse loading, both the normal and shear stresses are dominated by the ka-component. The
magnitudes of normal and shear stresses in the case of a long-duration force are much higher than those in the
case of a short-duration force; hence the possibility of crack growth is higher. In the case of a long-duration
force, the kb- and the ka-components play dominant roles for crack growth in Mode I and Mode II,
respectively. In the case of a short-duration force, however, the ka-component plays the dominant role for
crack growth in either Mode I or Mode II.

Further analysis shows that the evanescent kb-component plays an important role in the normal stress in the
case of long-duration excitation, while becomes less important in the case of short-duration excitation. For
the propagating kb-component, in the case of both long- and short-duration forces, the contribution is almost
the same as that of the ka-components.

The boundary conditions also affect the contributions of the two components to total stresses. For the
cantilever beam investigated, the two components are of the same amplitude and out-of-phase at the free end
as expected. At the clamped end, they are in-phase and their amplitudes are almost equal. A theoretical
analysis is given, showing that this is due to the influence of specific boundary conditions. From a boundary to
the mid-span, the variation of phase difference is different for long and short force duration. For a long-
duration impulse loading, the phase difference changes to p/2 at a location near the mid-span; while for a
short-duration impulse loading, the phase difference changes to p/2 at a location closer to the boundaries.
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